HSF1 protects neurons through a novel trimerization- and HSP-independent mechanism.

نویسندگان

  • Pragya Verma
  • Jason A Pfister
  • Sathi Mallick
  • Santosh R D'Mello
چکیده

Heat shock factor 1 (HSF1) protects neurons from death caused by the accumulation of misfolded proteins. It is believed that this protective effect is mediated by the transcriptional stimulation of genes encoding heat shock proteins (HSPs), a family of chaperones that refold or degrade misfolded proteins. Whether HSF1 is protective when neuronal death is not caused by protein misfolding has not been studied. Here, we report that HSF1 expression is necessary for the survival of rat neurons and that HSF1 mRNA and protein expression is reduced in neurons primed to die. Knock-down of HSF1 induces death of otherwise healthy neurons, whereas reestablishment of elevated levels of HSF1 protects neurons even when death is not due to accumulation of misfolded proteins. Neuroprotection by HSF1 does not require its trimerization, an event obligatory for the binding of HSF1 to heat shock elements within HSP gene promoters. Moreover, knock-down of HSP70 or blockade of HSP90 signaling does not reduce neuroprotection by HSF1. Although several neuroprotective molecules and signaling pathways, including CaMK, PKA, Casein kinase-II, and the Raf-MEK-ERK and PI-3K-Akt pathways, are not required for HSF1-mediated neuroprotection, protection is abrogated by inhibition of classical histone deacetylases (HDACs). We report that the novel mechanism of neuroprotection by HSF1 involves cooperation with SIRT1, an HDAC with well documented neuroprotective effects. Using a cell culture model of Huntington's disease, we show that HSF1 trimerization is not required for protection against mutant huntingtin-induced neurotoxicity, suggesting that HSF1 can protect neurons against both proteinopathic and nonproteinopathic death through a noncanonical pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat shock-independent induction of multidrug resistance by heat shock factor 1.

The screening of two different retroviral cDNA expression libraries to select genes that confer constitutive doxorubicin resistance has in both cases resulted in the isolation of the heat shock factor 1 (HSF1) transcription factor. We show that HSF1 induces a multidrug resistance phenotype that occurs in the absence of heat shock or cellular stress and is mediated at least in part through the c...

متن کامل

Heterotrimerization of HSF1 and HSF2 provides a transcriptional switch in response to distinct stimuli

Abbreviations: HSF-heat shock factor Hsp-heat shock protein nSB – nuclear stress body Sat III – satellite III 2 Abstract Organisms respond to circumstances threatening the cellular protein homeostasis by activation of heat shock transcription factors (HSFs), which play important roles in stress resistance, development and longevity. Of the four HSFs in vertebrates (HSF1-4), HSF1 is activated by...

متن کامل

Polo-like kinase 1 phosphorylates heat shock transcription factor 1 and mediates its nuclear translocation during heat stress.

Heat shock transcription factor 1 (HSF1) is activated by pathophysiologic stresses and activation leads to an increased cellular level of heat shock proteins (Hsp(s)). Although the activation of HSF1 occurs via multiple stress-induced processes such as hyperphosphorylation, the exact cellular mechanism of HSF1 activation is still unclear. Here we show polo-like kinase 1 (PLK1) and HSF1 interact...

متن کامل

Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1

The heat shock response is a universal homeostatic cell autonomous reaction of organisms to cope with adverse environmental conditions. In mammalian cells, this response is mediated by the heat shock transcription factor Hsf1, which is monomeric in unstressed cells and upon activation trimerizes, and binds to promoters of heat shock genes. To understand the basic principle of Hsf1 activation we...

متن کامل

Dynamics of the Full Length and Mutated Heat Shock Factor 1 in Human Cells

Heat shock factor 1 is the key transcription factor of the heat shock response. Its function is to protect the cell against the deleterious effects of stress. Upon stress, HSF1 binds to and transcribes hsp genes and repeated satellite III (sat III) sequences present at the 9q12 locus. HSF1 binding to pericentric sat III sequences forms structures known as nuclear stress bodies (nSBs). nSBs repr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 34 5  شماره 

صفحات  -

تاریخ انتشار 2014